Decreased plasma fibronectin leads to delayed thrombus growth in injured arterioles.

نویسندگان

  • Jana Matuskova
  • Anil K Chauhan
  • Beatrice Cambien
  • Sophie Astrof
  • Vandana S Dole
  • Crystal L Piffath
  • Richard O Hynes
  • Denisa D Wagner
چکیده

OBJECTIVE Plasma fibronectin (FN) is decreased in several clinical conditions. We were interested to study the thrombotic and hemostatic consequences of the decrease in plasma FN (pFN), the role of FN splice variants in thrombosis, and to examine whether pFN incorporates into thrombi in vivo. METHODS AND RESULTS We compared the thrombotic response to a vessel injury in FN heterozygous (FN+/-) mice and corresponding FN+/+ mice. Although normal thrombosis in venules was observed, a decrease to half in the pFN concentration in FN+/- mice caused a delay in the appearance of thrombi in arterioles and consequently a delay in their occlusion. We were able to rescue the thrombotic defect in the FN+/- mice by infusion of rat pFN. Additionally, we could show intense incorporation of fluorescent pFN-coated microspheres into the developing thrombi. Moreover, we found that mice expressing FN without the EIIIA or EIIIB domains specific to cellular FN including platelet FN had no thrombotic defect. CONCLUSIONS Mice heterozygous for FN have a striking defect in thrombus initiation and growth in arterioles attributable to the decrease of pFN. Our study is an example of haploid insufficiency for FN, and it emphasizes the fundamental role of this plasma protein in thrombosis in the arterial system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasma fibronectin promotes thrombus growth and stability in injured arterioles.

Mice lacking both of the best-known platelet ligands, von Willebrand factor and fibrinogen, can still form occlusive thrombi in injured arterioles. The platelets of these animals accumulate excessive amounts of fibronectin (FN). These observations led us to examine the contribution of plasma FN (pFN) to thrombus formation. Inactivation of the FN gene in FN conditional knockout mice reduced pFN ...

متن کامل

Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen.

We used intravital microscopy to observe the formation of platelet plugs in ferric chloride-injured arterioles of live mice. With this model, we evaluated thrombus growth in mice lacking von Willebrand factor (vWF) and fibrinogen (Fg), the two key ligands known to mediate platelet adhesion and aggregation. In vWF(-/-) mice, despite the presence of arterial shear, delayed platelet adhesion occur...

متن کامل

Adding complexity to fibronectin-platelet interactions.

The article by Chauhan et al in the current issue of Arteriosclerosis, Thrombosis, and Vascular Biology1 adds a new complexity to the roles of fibronectin in formation of hemostatic plugs and thrombotic occlusions. Normal mice, in which 99.5% of plasma fibronectin lacks the alternatively spliced EDA domain, were compared with mice genetically engineered to have only EDA-containing (EDA ) fibron...

متن کامل

Impact of fibronectin assembly on platelet thrombus formation in response to type I collagen and von Willebrand factor.

Plasma fibronectin enhances platelet thrombus formation on surfaces coated with collagen. We investigated the role of fibronectin assembly in this process. Platelets adherent to fibrillar type I collagen, but not platelets adherent to von Willebrand factor (VWF), supported assembly of plasma fibronectin under static conditions. At a shear rate of 1250 s(-1), platelets adherent to collagen assem...

متن کامل

Numerical Simulation of Thrombotic Occlusion in Tortuous Arterioles

Tortuous microvessels alter blood flow and stimulate thrombosis but the physical mechanisms are poorly understood. Both tortuous microvessels and abnormally large platelets are seen in diabetic patients. Thus, the objective of this study was to determine the physical effects of arteriole tortuosity and platelet size on the microscale processes of thrombotic occlusion in microvessels. A new latt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 26 6  شماره 

صفحات  -

تاریخ انتشار 2006